Distance de Manhattan

De testwiki
Aller à la navigation Aller à la recherche
Distance de Manhattan (chemins rouge, jaune et bleu) contre distance euclidienne en vert.

La distance de Manhattan[1]Modèle:,[2], appelée aussi taxi-distance[3], est la distance entre deux points parcourue par un taxi lorsqu'il se déplace dans une ville où les rues sont agencées selon un réseau ou quadrillage. Un taxi-chemin[3] est le trajet fait par un taxi lorsqu'il se déplace d'un nœud du réseau à un autre en utilisant les déplacements horizontaux et verticaux du réseau.

Définition

Entre deux points A et B, de coordonnées respectives et , la distance de Manhattan est définie par :

Autrement dit, c'est la distance associée à la norme 1.

Propriétés

On montre que si l'on oriente le réseau et que l'on définit des déplacements élémentaires positifs et négatifs, la distance de Manhattan est indépendante du chemin parcouru à l'intérieur d'un réseau fini. Ainsi, sur l'image de droite, la distance entre les deux points noirs, qu'on les joigne par les chemins rouge, bleu ou jaune, est identique (et égale à 12).

Références

Modèle:Références

Modèle:Autres projets

Modèle:Portail